(1)用分析法证明:当时,;(2)设是两个不相等的正数,若,用综合法证明:
(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分.) 已知数列{}满足:,为数列的前项和。 (1)若{}是递增数列,且成等差数列,求的值; (2)若,且{}是递增数列,{}是递减数列,求数列{}的通项公式; (3)若,对于给定的正整数,是否存在一个满足条件的数列,使得,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。
(本题满分16分,第1小题满分4分,第2小题的①满分6分,②满分6分.) 如图,椭圆,轴被曲线截得的线段长等于的长半轴长. (1)求实数的值; (2)设与轴的交点为,过坐标原点的直线与相交于点,直线 分别与相交与. ①证明: ②记△,△的面积分别是.若=,求的取值范围.
如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计. (1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴? (2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:)
(本题满分14分,第1小题满分6分,第2小题满分8分). 已知向量,且. 设. (1)求的表达式,并求函数在上图像最低点的坐标. (2)若对任意,恒成立,求实数的范围.
(本题满分12分;第1小题6分,第2小题6分) 已知函数 (1)若,求的取值范围; (2)求的最大值.