(本小题满分13分)从万州二中高二年级文科学生中随机抽取60名学生,将其月考的政治成绩(均为整数)分成六段: ,,…,后得到如下频率分布直方图 .(Ⅰ)求分数在内的频率;(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样 本看成一个总体,从中任意选取2人, 求其中恰有1人的分数不低于90分的概率.
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项. (1)求数列{an},{bn}的通项公式; (2)设数列{cn}对n∈N*,均有++…+=an+1成立,求c1+c2+c3+…+c2014的值.
已知等差数列{an}中,a5=12,a20=-18. (1)求数列{an}的通项公式; (2)求数列{|an|}的前n项和Sn.
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=+n-4. (1)求证{an}为等差数列; (2)求{an}的通项公式.
设数列{an}的前n项和Sn满足=3n-2. (1)求数列{an}的通项公式; (2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.
已知数列{an}的通项公式为an=n2-n-30. (1)求数列的前三项,60是此数列的第几项? (2)n为何值时,an=0,an>0,an<0? (3)该数列前n项和Sn是否存在最值?说明理由.