(1)已知函数 f x = r x - x ` + 1 - r x > 0 ,其中 r 为有理数,且 0 < r < 1 . 求 f x 的最小值; (2)试用(1)的结果证明如下命题:设 a 1 ≥ 0 , a 2 ≥ 0 , b 1 , b 2 为正有理数. 若 b 1 + b 2 = 1 ,则 a 1 k 1 a 2 k 2 ≤ a 1 b 1 + a 2 b 2 ; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题. 注:当 α 为正有理数时,有求导公式 x α ` = α x α - 1 .
.(本小题满分12分) 在直角坐标系中,椭圆的左、右焦点分别为. 其中也是抛物线的焦点,点为与在第一象限的交点,且 (Ⅰ)求的方程; (Ⅱ)若过点的直线与交于不同的两点.在之间,试求与面积之比的取值范围.(O为坐标原点)
(本小题满分12分) 如图,五面体中,.底面是正三角 形,.四边形是矩形,二面角为 直二面角. (Ⅰ)在上运动,当在何处时,有∥平面, 并且说明理由; (Ⅱ)当∥平面时,求二面角余弦值.
(本小题满分12分) 某校高三数学竞赛初赛考试后,对考生成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组、第二组…第六组. 如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. (Ⅰ)请补充完整频率分布直方图,并估 计这组数据的平均数M; (Ⅱ)现根据初赛成绩从第四组和第六组 中任意选2人,记他们的成绩分别 为. 若,则称此二 人为“黄金帮扶组”,试求选出的二 人错误!链接无效。的概率; (Ⅲ)以此样本的频率当作概率,现随机在这组样本中选出的3名学生,求成绩不低于 120分的人数分布列及期望.
(本小题满分12分) 在中,角的对边分别为,且满足 (Ⅰ)若求此三角形的面积; (Ⅱ)求的取值范围.
( 已知向量,,且 (1)求及; (2)求函数的最小值.