在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1.(1)求a的值;(2)设抛物线的顶点P关于原点的对称点为,求点的坐标;(3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m的取值范围.
解下列方程: (1) (2)8(3 -x)2 –72=0
如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(-5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒. (1)求A、C两点的坐标; (2)连接PA,用含t的代数式表示△POA的面积; (3)当P在线段BO上运动时,在y轴上是否存在点Q,使△POQ与△AOC全等?若存在,请求出t的值并直接写出Q点坐标;若不存在,请说明理由.
杨佳明周日骑车从家里出发,去图书馆看书, (1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象; (2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象; (3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第 分钟,并求出她在骑行30分钟时的路程是 .
这是某单位的平面示意图,已知大门的坐标为(-3,0),花坛的坐标为(0,-1). (1)根据上述条件建立平面直角坐标系; (2)建筑物A的坐标为(3,1),请在图中标出A点的位置. (3)建筑物B在大门北偏东45°的方向,并且B在花坛的正北方向处,请直接写出B点的坐标. (4)在y轴上找一点C,使△ABC是以AB腰的等腰三角形,请直接写出点C的坐标.
在平面直角系中,已知A(-2,0),B(0,4),C(3,6); (1)当D(6,0)时,求四边形ABCD的面积; (2)在x轴上找一点P,使△PBC的周长最小,并求出此时△PBC的周长.