如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=-的图象交于A(-1,m),B(n,-3)两点,一次函数y=kx+b的图象与y轴交于点C.(1)求一次函数的解析式;(2)点P是x轴上一点,且△BOP的面积是△BOC面积的2倍,求点P的坐标.
(1)计算:;(2)化简:.
解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“长方形的长和宽的长分别是3和4,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且一边长为3,求另一边的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”,等等. (1)设,,求A与B的积; (2)提出(1)的一个“逆向”问题,并解答这个问题.
已知如图,AB∥CD∥EF,点M、N、P分别在AB、CD、EF上,NQ平分∠MNP. (1)若∠AMN=50º,∠EPN=70º,分别求∠MNP,∠DNQ的度数; (2)若∠AMN=度,∠EPN=度,请直接写出∠DNQ的度数(用含,的代数式表示); (3)试探究:∠DNQ与∠AMN,∠EPN之间的数量关系,并说明理由.
下面是小明对多项式进行因式分解的过程. 解:设. 原式=(第一步) =(第二步) =(第三步) =(第四步) 回答下列问题: (1)小明从第二步到第三步运用了因式分解的.
(2)小明因式分解的结果是否彻底?答:(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果. (3)请你模仿以上方法尝试对多项式进行因式分解.
一家公司加工一批农产品,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购了农产品150吨,并用14天加工完这批农产品.根据题意,甲、乙两名同学分别列出的方程组(部分)如下: 甲:乙: (1)根据甲、乙两名同学所列的方程组,请你在方框中补全甲、乙两名同学所列的方程组; (2)求粗加工和精加工这批农产品各多少吨?