为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
已知数列,满足a1=2,2an=1+anan+1,bn=an-1, bn≠0 ⑴求证数列是等差数列,并求数列的通项公式; ⑵令Tn为数列的前n项和,求证:Tn<2
已知向量,函数,且函数图象的相邻两条对称轴之间的距离为 ⑴作出函数y=-1在上的图象 ⑵在中,分别是角的对边,求的值
已知,函数(的图像连续不断) (Ⅰ)求的单调区间; (Ⅱ)当时,证明:存在,使; (Ⅲ)若存在均属于区间的,且,使,证明.
已知等比数列的各项均为正数,且. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前n项和. (Ⅲ)设,求数列{}的前项和.
已知椭圆.过点(m,0)作圆的切线交椭圆G于A,B两点. (Ⅰ)求椭圆G的焦点坐标和离心率; (Ⅱ)将表示为m的函数,并求的最大值.