(本小题满分13分)如图,直角坐标系中,一直角三角形,,在轴上且关于原点对称,在边上,,的周长为12.若一双曲线以为焦点,且经过两点.(1)求双曲线的方程;(2)若一过点(为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点、,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由.
三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,,平面,,,为中点.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的正弦值.
已知函数,其图像在点处的切线为.(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;(2)求、直线及轴围成图形的面积.
已知(1)求; (2)
已知数列的前项之和为,且.(1)求的通项公式;(2)数列满足,求数列的前项和;(3)若一切正整数恒成立,求实数的取值范围.
已知,(且).(1)过作曲线的切线,求切线方程;(2)设在定义域上为减函数,且其导函数存在零点,求实数的值.