(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元。 (1)填表(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
有一块两条直角边BC、AC的长分别为3厘米和4厘米的Rt△ABC的铁片,现要把它加工成一个面积尽最大的正方形,甲、乙两位师傅加工方案分别如图所示,请用你学过的知识说明哪位师傅的加工方案符合要求(加工中的损耗忽略不计).
如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=1200,求证(1)△ACP∽△PDB,(2)
如图在正方形ABCD中,E是CD上一点,F是CB延长线上一点,且DE=BF,AF,AE之间有怎样的关系?请说明理由。
如图,△ABC为直角三角形,∠ACB=90°,CD⊥AB于D, (1)找出图中所有的相似三角形,分别是 ; (2)求证: