在菱形ABCD中,∠BAD是锐角,AC,BD相交于点O,E是BD的延长线上一动点(不与点D重合),连接EC并延长和AB的延长线交于点F,连接AE.(1)比较∠F和∠ABD的大小,并说明理由;(2)当△BFC有一个内角是直角时,求证:△BFC∽△EFA;(3)当△BFC与△EFA相似(两三角形的公共角为对应角),且AC=12,DE=5时,求△BFC与△EFA的相似比.
已知二次函数的顶点坐标为(2,-2),且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图像与y轴的交点坐标。
已知一个口袋中装有4个只有颜色不同的球,其中3个白球,1个黑球. (1)求从中随机抽取出一个黑球的概率是多少; (2)若从口袋中摸出一个球,记下颜色后不放回,再摸出一个球。请列表或作出树状图,求两次都摸出白 球的概率?
(本小题12分)如图,直线分别交轴于、,点是该直线与反比例函数在第一象限内的一个交点,轴于,且. (1)求点的坐标; (2)设点与点在同一个反比例函数的图象上,且点在直线的右侧,作轴于,当与相似时,求点的坐标.
(本小题12分)如图,在梯形中,,对角线与相交于点,过点作交于点,若,,的面积为, (1)求和的面积;(2)求的长.
(本小题10分)如图,已知、是一次函数的图象与反比例函数 的图象的两个交点. (1)求此反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的的取值范围.