在ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是 ;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是 ;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
(每小题8分,共16分) (1)计算: (2)解方程:
如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式; (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.
如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α. (1)问题发现 ① 当时,;② 当时, (2)拓展探究 试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明. (3)问题解决 当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡: ① 金卡售价600元/张,每次凭卡不再收费; ② 银卡售价150元/张,每次凭卡另收10元. 暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设游泳x次时,所需总费用为y元. (1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式; (2)在同一个坐标系中,若三种消费方式对应的函数图像如图所示,请求出点A、B、C的坐标; (3)请根据函数图象,直接写出选择哪种消费方式更合算.
如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30º,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)