(本小题满分11分)如图,E、F分别是正方形ABCD的边DC、CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF;(2)若E是CD的中点,求证:Q为CF的中点;(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.
在课外活动期间,小英、小丽和小敏在操场上画出A、B两个区域,一 起玩投沙包游戏.沙包落在A区域所得分值与落在B区域所得分值不同.当每人各投沙包 四次时,其落点和四次总分如图所示.请求出小敏的四次总分.
先化简,再求值:,其中.
解不等式组,并写出不等式组的整数解。
.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ. ①求证:△ABP≌△ACQ; ②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长. (2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.
(8分) (1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太 阳光去测量旗杆的高度. 参考示意图1,他的测量方案如下: 第一步,测量数据.测出CD=1.6米,CF=1.2米, AE=9米. 第二步,计算. 请你依据小明的测量方案计算出旗杆的高度. (2) 如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离. 要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算) 你选择出的必须工具是; 需要测量的数据是.