如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,平面外一点满足,.(Ⅰ)证明:;(Ⅱ)已知点,为线段,上的点,使得,求当最短时,平面和平面所成二面角的正弦值.
已知圆C:(x-1) +(y-2) =25,直线L:(2m+1)x+(m+1)y-7m-4=0(m∈R)(1)证明:无论m取什么实数,L与圆恒交于两点.(2)求直线被圆C截得的弦长最小时L的方程.
已知圆x2+y2=8,定点P(4,0),问过P点的直线斜率在什么范围内取值时,这条直线与已知圆(1)相切 ,(2)相交, (3)相离?
已知方程表示一个圆。(1)求t的取值范围;(2)求该圆半径r的最大值及此时圆的标准方程
ABC的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。