如图,抛物线经过两点.连结,过点作,交抛物线于点.(1)求该抛物线的解析式;(2)求点的坐标;(3)将抛物线沿着过点且垂直于轴的直线对折,再向上平移到某个位置后此抛物线与直线只有一个交点,请直接写出此交点的坐标.
(本题14分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)请用含t的代数式表示出点D的坐标;(2)求t为何值时,△DPA的面积最大,最大为多少?(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;(4)请直接写出随着点P的运动,点D运动路线的长.
(本题12分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=DB,连结AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.
(本题10分)如图,的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求这两个函数的表达式;(2)请直接写出当x取何值时,.
(本题10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使,并写出点A2的坐标.
(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.
(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?