某公司为了扩大生产规模,决定新购进6台机器,但所用资金不超过68万元,现有甲、乙两种机器可供选择,甲每台14万元,乙每台10万元,问该公司有哪几种购买方案,并说明理由。
如图,分别与相切于点,点在上,且,,垂足为.(1)求证:;(2)若的半径,,求的长
小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)
科学研究发现,空气含氧量(克/立方米)与海拔高度(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出与的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?
如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭处测得湖心岛上的迎宾槐处位于北偏东方向,然后,他从凉亭处沿湖岸向正东方向走了100米到处,测得湖心岛上的迎宾槐处位于北偏东方向(点在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐处与湖岸上的凉亭处之间的距离(结果精确到1米).(参考数据:,)
某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?(无原图)