选修4-2:矩阵与变换 已知矩阵A=,直线l:x-y+4=0在矩阵A对应的变换作用下变为 直线l¢:x-y+2a=0. (1)求实数a的值; (2)求A2.
已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线. (1)求曲线的方程; (2)若直线与(1)中所求点的轨迹交于不同两点是坐 标原点,且,求△的面积的取值范围.
已知函数 (1)若函数在和时取得极值,当时,<2|c|恒成立,求c的取值范围 (2)若写出使的g(x)>f(x)的x取值范围。
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。 (1)求证:BM∥平面PAD; (2)在侧面PAD内找一点N,使MN平面PBD; (3)求直线PC与平面PBD所成角的正弦。
已知函数= (1)若-2(a,b∈Z),求等式>0的解集为R的概率; (2)若,求方程=0两根都为负数的概率.
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+) (1)证明:数列{an+1-an }是等比数列; (2)求数列{an}的通项公式