如图,在直三棱柱 A B C - A 1 B 1 C 1 中,已知 A C ⊥ B C , B C = C C 1 ,设 A B 1 的中点为 D , B 1 C ∩ B C 1 = E .
求证:
(1) D E ∥ 平面 A A 1 C 1 C
(2) B C 1 ⊥ A B 1 .
(本小题满分12分)设为的内角、、所对的边分别为、、,且. (1)求角的大小; (2)若,求的最值.
(本小题满分14分) (1)当时,求的极值点. (2)若,的图象与的图象有个不同的交点,求实数的范围.
(本小题满分13分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2. (1)求椭圆C的方程及离心率; (2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
(本小题满分12分)已知各项均为正数的数列的前项和为,且.在数列中,,. (Ⅰ)求,; (Ⅱ)设求数列的前项和.
(本小题满分12分)为了了解山东省各旅游景点在大众中的熟知度,随机对15~65岁的人群抽样调查了人,回答问题“山东省有哪几个著名的旅游景点?”统计结果如下图表.
(1)分别求出的值; (2)从第组回答正确的人中用分层抽样的方法抽取6人,求第组每组各抽取多少人? (3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.