如图,在直三棱柱 A B C - A 1 B 1 C 1 中,已知 A C ⊥ B C , B C = C C 1 ,设 A B 1 的中点为 D , B 1 C ∩ B C 1 = E .
求证:
(1) D E ∥ 平面 A A 1 C 1 C
(2) B C 1 ⊥ A B 1 .
甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是,乙能答对其中的道题.规定每次考试都从备选的道题中随机抽出道题进行测试,答对一题加分,答错一题(不答视为答错)减分,至少得分才能入选. (1)求甲得分的数学期望; (2)求甲、乙两人同时入选的概率.
已知公差不为0的等差数列的前项和为,,且成等比数列. (1)求数列的通项公式; (2)试推导数列的前项和的表达式。
已知向量,,函数 (1)求的单调递增区间; (2)若不等式都成立,求实数m的最大值.
设函数. (1)若曲线在点处与直线相切,求的值; (2)求函数的单调区间与极值点. (3)设函数的导函数是,当时求证:对任意成立
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点. (1)求该椭圆的标准方程; (2)若是椭圆上的动点,求线段中点的轨迹方程;