在数列 a n 中, a 1 = 3 , a n + 1 a n + λ a n + 1 + μ a n 2 = 0 ( n ∈ N * )
(1)若 λ = 0 , μ = - 2 求数列 a n 的通项公式; (2)若 λ = 1 k o ( k o ∈ N * , k o ≥ 2 ) , μ = - 1 证明: 2 + 1 3 k o + 1 < a k o + 1 < 2 + 1 2 k o + 1
如图,函数的图象与轴交于点,且在该点处切线的斜率为 (1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值
在△中,角、、的对边分别为、、,若.⑴求证:;⑵求边长的值;⑶若,求△的面积.
已知函数(Ⅰ)判定函数的奇偶性;(Ⅱ)求函数的值域。
设是公差不为零的等差数列,为其前项和,满足 (1)求数列的通项公式及前项和;(2)试求所有的正整数,使得为数列中的项.
设函数f(x)=2在处取最小值. (1) 求.的值; (2) 在ABC中,分别是角A,B,C的对边,已知,求角C.