△ A B C 中,内角 A , B , C 所对的边分别为 a , b , c ,已知 △ A B C 的面积为 3 15 , b - c = 2 , cos A = - 1 4 . (Ⅰ)求 a 和 sin C 的值; (Ⅱ)求 cos ( 2 A + π 6 )  的值.
(本小题满分12分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.求:(1)则袋中原有白球的个数;(2)取球2次终止的概率;(3)甲取到白球的概率
(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:(1)A、B两组中有一组恰有两支弱队的概率;(2)A组中至少有两支弱队的概率.
(本小题满分12分)甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算:(1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率.
(本小题满分10分)一名学生在军训中练习射击项目,他射击一次,命中目标的概率是,若连续射击6次,且各次射击是否命中目标相互之间没有影响.(1)求这名学生在第3次射击时,首次命中目标的概率;(2)求这名学生在射击过程中,恰好命中目标3次的概率.
(本小题满分14分) 对于函数f(x),若存在x0∈R,使f(x0)=x0成立, 则称x0为f(x)的不动点. 已知函数f(x)=ax2+(b+1)x+b-1(a≠0)(1)当a=1,b=-2时,求f(x)的不动点;(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围