如图,椭圆E: x 2 a 2 + y 2 b 2 = 1 a > b > 0 的离心率是 2 2 ,点 P 0 , 1 在短轴 C D 上,且 P C ⇀ · P D ⇀ = - 1
(Ⅰ)求椭圆 E 的方程; (Ⅱ)设 O 为坐标原点,过点 P 的动直线与椭圆交于 A 、 B 两点.是否存在常数 λ ,使得 O A ⇀ · O B ⇀ + λ P A ⇀ · P B ⇀ 为定值?若存在,求 λ 的值;若不存在,请说明理由.
甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为、、,求:(1)三人中有且只有两人及格的概率;(2)三人中至少有一人不及格的概率。
2015年五一节”期间,高速公路车辆“较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:(1)求a的值,并说明交警部门采用的是什么抽样方法?(2)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率;(3)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1)。
现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各名,组成一个小组.(1)求被选中的概率;(2)求和不全被选中的概率.
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,.(1)求B的大小;(2)若,,求b.
设数列数列的前项和为,,,(1)求证:是等差数列;(2)设是数列的前项和,求使对所有的都成立的最大正整数的值.