如图,椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率是 2 2 ,过点 P ( 0 , 1 ) 的动直线 l 与椭圆相交于 A , B 两点,当直线 l 平行与 x 轴时,直线 l 被椭圆 E 截得的线段长为 2 2 .
(1)求椭圆 E 的方程; (2)在平面直角坐标系 x O y 中,是否存在与点 P 不同的定点 Q ,使得 Q A Q B = P A P B 恒成立?若存在,求出点 Q 的坐标;若不存在,请说明理由.
(本小题满分12分)设函数,(1)证明:是上的增函数;(2)设,当时,恒成立,求的取值范围.
(本小题满分12分)已知椭圆:上任意一点到两焦点距离之和为,离心率为,动点在直线上,过作直线的垂线,设交椭圆于点.(1)求椭圆的标准方程;(2)证明:直线与直线的斜率之积是定值;
(本小题满分12分)在长方体中,,.点是线段上的动点,点为的中点.(1)当点是中点时,求证:直线∥平面;(2)若二面角的余弦值为,求线段的长.
(本小题满分12分)已知函数的图象过点,且点在函数的图象上.(1)求数列的通项公式;(2)令,若数列的前项和为,求证:.
(本小题满分12分)在平面直角坐标系中,点在角的终边上,点在角的终边上,且.(1)求的值;(2)求的值.