《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马 P - A B C D 中,侧棱 P D ⊥ 底面 A B C D ,且 P D = C D ,过棱 P C 的中点 E ,作 E F ⊥ P B 交 P B 于点 F ,连接 D E , D F , B D , B E .
(Ⅰ)证明: P B ⊥ 平面 D E F .试判断四面体 D B E F 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (Ⅱ)若面 D E F 与面 A B C D 所成二面角的大小为 π 3 ,求 D C B C 的值.
已知命题:关于的不等式的解集为空集,命题:方程表示焦点在轴上的椭圆,若命题为真命题,为真命题 ,求 实数的取值范围
如图,P—ABCD是正四棱锥,是正方体,其中(1)求证:;(2)求平面PAD与平面所成的锐二面角的余弦值;(3)求到平面PAD的距离
已知平行四边形ABCD,从平面ABCD外一点引向量,(1)求证:四点共面;(2)平面ABCD平面EFGH.
已知椭圆的两个焦点分别为 离心率e= (1)求椭圆的方程。(2)若CD为过左焦点的弦,求的周长
求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程。