设 n ∈ N + , x n 是曲线 y = x 2 n + 2 + 1 在点 ( 1 , 2 ) 处的切线与 x 轴交点的横坐标. (Ⅰ)求数列 { x n } 的通项公式; (Ⅱ)记 T n = x 1 2 x 3 2 . . . x 2 n - 1 2 ,证明 T n ≥ 1 4 n .
设计求的算法,并画出相应的程序框图.
已知圆,设点是直线上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为.(1)若,求直线的方程;(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值.
设函数在定义域是奇函数,当时,.(1)当,求;(2)对任意,,不等式都成立,求的取值范围.
(1)已知,求的值; (2)已知,求的值.
已知圆.(1)已知不过原点的直线与圆相切,且在轴,轴上的截距相等,求直线的方程;(2)求经过原点且被圆截得的线段长为2的直线方程.