如图,已知中,,,,,交于,为上点,且,将沿折起,使平面平面(1)求证:∥平面;(2)求三棱锥的体积
已知设的反函数为。(I)求的单调区间;(II)若对任意,不等式恒成立,求实数的取值范围。
如图所示,四棱锥中,为的中点,点在上且(I)证明:N;(II)求直线与平面所成的角
某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:(I)至少有1人面试合格的概率;(II)签约人数的分布列和数学期望。
设函数(I)求函数的周期;(II)设函数的定义域为,若,求函数的值域。
如图所示,四棱锥中,底面为的中点。(I)试在上确定一点,使得平面 (II)点在满足(I)的条件下,求直线与平面所成角的正弦值。