(本小题满分14分)如图,已知椭圆,焦距为,其离心率为,,分别为椭圆的上、下顶点,过点的直线分别交椭圆于两点.(1)求椭圆的标准方程;(2)若的面积是的面积的倍,求的最大值.
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
设{an}是由正数组成的等比数列,Sn是其前n项和,证明:.
求数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,……(其中a≠0)的前n项和Sn.
过点P(2,3),且在坐标轴上的截距相等的直线方程是 。
正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为 。