近年某高中招生制度改革,实行自主招生。某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等。(1)、若学校只有一个名额,则随机选到小斌的概率是(2)、若学校争取到两个名额,请用树状图或列表法求随机选到保送的学生恰好是一男一女的概率。
如图,已知直角梯形ABCD ,∠B=900.AD∥BC, 以AB为直径作⊙O,连接OD,并且OD、OC分别平分∠ADC、∠BCD.(1) 求证:⊙O与CD相切。(2)若,求⊙O的半径?
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣x2+bx+c的图象经过B、C两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x的取值范围.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2) 当∠ODB=30°时,求证:BC="OD."
如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(,)、B(,1)、C(0,).(1) 点B关于坐标原点O对称的点的坐标为__________;(2) 将△ABC绕点C顺时针旋转,画出旋转后得到的△A1B1C;(3) 求过点B1的反比例函数的解析式.
某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年至2012年每年平均每次捕鱼量的年平均下降率.