(本小题满分7分)有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数中的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为的值.(1)的值为正数的概率是 ;(2)用画树状图或列表法求所得到的一次函数的图像经过第一、三、四象限的概率.
抛物线交轴于两点,交轴于点,对称轴为直线。且A、C两点的坐标分别为,求抛物线的解析式;在对称轴上是否存在一个点,使的周长最小.若存在,请求出点的坐标;若不存在,请说明理由.
已知:△内接于⊙,过点作直线,为非直径的弦,且。求证:是⊙的切线若,,联结并延长交于点,求由弧、线段 和所围成的图形的面积
如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连结AE.△ACE≌△BCDAE∥BC.
已知一次函数的图象与反比例函数的图象相交,其中一个交点的纵坐标为-4.求两个函数的解析式结合图象求出当时,的取值范围
为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?