(本题5分)如下图,在每个小正方形边长为1的方格纸中, △ABC的顶点都在方格纸格点上.(1)△ABC的面积为 ;(2)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B',补全△A′B′C′;(3)若连接,,则这两条线段之间的关系是 ;(4)在图中画出△ABC的高CD;(5)能使S△ABC=S△QBC的格点Q,共有 个.
如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)
为了了解某地初中三年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答下列问题: (1)指出这个问题中的总体; (2)求竞赛成绩在84.5﹣89.5这一小组的频率; (3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.
先化简,再求值:﹣,其中a=+1,b=﹣1.
已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2. (1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点; (2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值; (3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.
如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC. (1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1); (2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案); (3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).