已知函数f(x)=103sinx2cosx2+10cos2x2.
(Ⅰ)求函数f(x)的最小正周期; (Ⅱ)将函数f(x)的图象向右平移π6个单位长度,再向下平移a(a<0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2. (ⅰ)求函数g(x)的解析式; (ⅱ)证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.
如图1,在边长为的正三角形中,,,分别为,,上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结,.(如图2) (Ⅰ)求证:⊥平面;(Ⅱ)求直线与平面所成角的大小.
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损万元.两种产品生产的质量相互独立.(Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列;(Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.
已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.
选修4-5:不等式选讲:若关于的方程有实根(Ⅰ)求实数的取值集合(Ⅱ)若对于,不等式恒成立,求的取值范围
选修4-4:极坐标与参数方程:已知椭圆C的极坐标方程为,点为其左,右焦点,直线的参数方程为(为参数,).(Ⅰ)求直线和曲线C的普通方程;(Ⅱ)求点到直线的距离之和.