如图,在直角坐标系中,A点在x轴上,AB∥y轴,C点在y轴上,CB∥x轴,点B的坐标为(8,10),点D在BC上,将△ABD沿直线AD翻折,使得点B刚好落在y轴的点E处.(1)求△CDE的面积;(2)求经过A、D、O三点的抛物线的解析式;(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,问是否存在这样的点M和点N,使得以A、E、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M和点N的坐标;若不存在,请说明理由.
(本题10分)如图,已知四边形ABCD中,AD=4,CD=3,AB=AC, (1)如图1,若∠CAB=60°,∠ADC=30°,求BD的长; (2)如图2,若∠CAB=90°,∠ADC=45°,求BD的长.
(本题8分)如图,四边形ABCD中,∠ABC=90°,CD⊥AD,, (1)求证:AB=BC; (2)过点B作BE⊥AD于E,若四边形ABCD的面积为,求BE的长.
(本题7分)化简求值. 已知:,求式子的值.
本题6分)如图,平面直角坐标系中, (1)取点A(2,1)、点B(-3,4),则线段AB的长为; (2)若点A的坐标为A(,),点B的坐标为A(,),则线段AB的长为(用含、、、的式子表示); (3)△ABC中,已知点A(2,-2)、点B(-3,-1)、点C(-1、-4),请运用(2)中的结论,不画图,用代数方法判断并证明△ABC的形状.
(本题7分)如图,长方形纸片ABCD中,AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,EF=3,求AB的长.