某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款。 现某客户要到该服装厂购买西装20套,领带x条(x>20)。(1)若该客户按方案①购买,需付款 ▲ 元(用含x的代数式表示); 若该客户按方案②购买,需付款 ▲ 元(用含x的代数式表示)°(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点. (1)求证:DE为⊙O的切线; (2)若DE=3,AC=8,求直径AB的长.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为r米,面积为S平方米.(注:的近似值取3) (1)求出S与r的函数关系式,并写出自变量的取值范围; (2)当半径r为何值时,扇形花坛的面积最大,并求面积的最大值.
如图,AB是⊙O的弦,OC⊥AB于点C,连接OA,AB=12,⊙O半径为10. (1)求OC的长; (2)点E,F在⊙O上,EF∥AB.若EF=16,直接写出EF与AB之间的距离.
已知:二次函数y=x2+bx-3的图象经过点A(2,5). (1)求二次函数的解析式; (2)求二次函数的图象与x轴的交点坐标; (3)将(1)中求得的函数解析式用配方法化成y=(x-h)2+k的形式.
(本题12分)如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10. (1)求梯形ABCD的面积; (2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问: ①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由. ②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.