如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与轴交于A,B两点,∠ACD=90°,抛物线经过A,B,C三点.(1)求证:∠CAO=∠CAD;(2)求弦BD的长;(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
化简求值其中
解不等式组:
有一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有米高.
(本题10分)如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动. (1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标; (2)设∠BAO的外角和∠ABO的外的平分线相交于点P, 问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;