(本小题满分13分)已知数列的前项和为,且(其中是不为零的常数),.(Ⅰ)证明:数列是等比数列;(Ⅱ)当=1时,数列求数列的通项公式.
(本小题共16分) 已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值(2)设直线与轴、轴分别交于点,,求证:为定值.
(本小题满分14分) 如图:设工地有一个吊臂长的吊车,吊车底座高,现准备把一个底半径为高的圆柱形工件吊起平放到高的桥墩上,问能否将工件吊到桥墩上?(参考数据:)
(本小题满分14分) 如图,为圆的直径,点、在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,. (1)求证:平面; (2)设的中点为,求证:平面; (3)设平面将几何体分成的两个锥体的体积分别为,, 求
(本小题满分14分) 在△ABC中,分别为角A、B、C的对边,,="3," △ABC的面积为6 (1)求角A的正弦值; (2)求边b、c;
已知. (1)求函数在区间上的最小值; (2)对一切实数,恒成立,求实数的取值范围; (3)证明对一切,恒成立.