如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知点的高度AB为2m,台阶AC的坡度为,且B、C、E三点在同一条直线上.请根据以上条件(1)求出点A到点C的距离AC.(2)求出树DE的高度。(测量器的高度忽略不计。).
如图,△ABC中各顶点的坐标分别是A(2,6)、B(6,4)、C(4,2). (1)在第一象限内,画出以点0为位似中心,位似比为 的位似图形△A1B1 C1(2)写出△A1B1 C1各点的坐标.
如图,D是AB上的一点,DF与AC相交于E,DE=EF,CF∥BA.求证:四边形ADCF是平行四边形.
某山村种的水稻2010年平均每公顷产7 200 kg,2012年平均每公顷产8 712 kg,求水稻每 公顷产量的年平均增长率.
解不等式:一x>l,并将解集在数轴上表示出来.
如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O 上一点,过C作,垂足为D。问:当AC满足什么条件时,CD为⊙O的切线,请说明理由。