某校九年级(1)班所有学生参加2015年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有 人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是 ,等级C对应的圆心角的度数为 ;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有 人.
在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.
已知:直线交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线经过点A、B、C. (1)求该抛物线的表达式; (2)点D的坐标为(-3,0),点P为线段AB上一点,当锐角∠PDO的正切值为时,求点P的坐标; (3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等于四边形APCE的面积时,求点E的坐标.
已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上,∠BAE=∠DAF. (1)求证:BE=DF; (2)联结AC交EF于点O,延长OC至点M,使OM= OA,联结EM、FM.求证:四边形AEMF是菱形.
某超市进了一批成本为6元/个的文具.调查后发现:这种文具每周的销售量y(个)与销售价x(元/个)之间的关系满足一次函数关系,如下表所示:
(1)求y与x之间的函数解析式(不必写出定义域); (2)已知该超市这种文具每周的销售量不少于60个,若该超市某周销售这种文具(不考虑其它因素)的利润为800元,求该周每个文具的销售价.
如图,在△ABC中,AB=AC=10,,圆O经过点B、C,圆心O在△ABC的内部,且到点A的距离为2,求圆O的半径.