如图,矩形ABCD中,AB=4cm,AD="3" cm,点P从A点出发,以5cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以4cm/s的速度,沿射线AB作匀速运动。当P运动到C点时,P、Q都停止运动。设点P运动的时间为ts。(1)当P异于A.C时,证明:以P为圆心、PQ长为半径的圆总是与边AB相切;(2)在整个运动过程中,t为怎样的值时,以P为圆心、PQ长为半径的圆与边BC分别有1个公共点和2个公共点?
如图所示,课外活动中,小明在离旗杆AB的12米C处,用测角仪测得旗杆顶部A的仰角为,已知测角仪器的高CD =1.6米,求旗杆AB的高.(精确到米) (供选用的数据:,,)
如图,在中,AB = AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F, 求证:DE = DF. 证明:(①) 在BDE和中,,≌(②)(③) ⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据. ⑵请你写出另一种证明此题的方法.
解方程:
已知关于的一元二次方程. (1)求证:当取不等于l的实数时,此方程总有两个实数根. (2)若是此方程的两根,并且,直线:交轴于点A,交轴于点B,坐标原点O关于直线的对称点O′在反比例函数的图象上,求反比例函数的解析式. (3)在(2)的成立的条件下,将直线绕点A逆时针旋转角,得到直线′,′交轴于点P,过点P作轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求角的值.
如图:点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米,⊙A以每秒2厘米的速度自左向右运动,于此同时,⊙B的半径也不断增大,其半径(厘米)与时间(秒)之间的关系式为(≥0). (1)试写出点A、B之间的距离(厘米)与时间(秒)之间的函数表达式. (2)问点A出发后多少秒两圆相切?