(本题 6 分)先化简,后求值:,其中a = -3.
已知:如图,A、B、C为⊙O上的三个点,⊙O的直径为4cm,∠ACB=45°,求AB的长
已知二次函数y=x2+bx+c的图象过(2,-1)和(4,3)两点,求y=x2+bx+c的表达式
如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE
小明四等分弧AB,他的作法如下: (1)连接AB(如图); (2)作AB的垂直平分线CD交弧AB于点M,交AB于点T; (3)分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。你认为小明的作法是否正确: 理由是
如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B. (1)①直接写出点B的坐标;②求抛物线解析式. (2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标; (3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.