已知,大正方形的边长为4,小正方形的边长为2,状态如图所示.大正方形固定不动,把小正方形以的速度向大正方形的内部沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为,完成下列问题:(1)用含的式子表示,要求画出相应的图形,表明的范围;(2)当,求重叠部分的面积;(3)当,求的值.
如图,是半圆的直径,过点作弦的垂线交半圆 于点,交于点使.(1)判断直线与圆的位置关系,并证明你的结论;(2)若,求的长.
现有一个种植总面积为540m2的矩形塑料大棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
(1)若设草莓共种植了垄,通过计算说明共有几种种植方案?分别是哪几种?(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.(1)直接写出小丽取出的卡片恰好是的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.
如图,在四边形中,点是线段上的任意一点(与不重合),分别是的中点.(1)试判断四边形的形状并说明理由;(2)在(1)的条件下,若,且,证明平行四边形是正方形.
某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8. 8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD= 3.2m.已知斜坡CD的坡比i=1︰,求树高AB。(结果保留整数,参考数据:1.7)