如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。(1)设AA′=m(m >0),试用含m的式子表示,并求出使取得最小值时点E′的坐标;(2)当A′B+BE′取得最小值时,求点E′的坐标。
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE. (1)说明四边形ACEF是平行四边形; (2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
关于x的方程(k-2)x2-2(k-1)x+k+1=0,且k≤3.求证:方程总有实数根.
先化简,再求值:2a(a+b)-(a+b)2,其中a=.b=
(本小题满分9分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)当t为何值时,△ACM的面积最大?最大值为多少? (3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?
(本小题满分9分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; (3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.