(年江苏徐州10分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.
已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg) 4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.5 3.6 4.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7 某医院2014年3月份20名新生儿体重的频数分布表
(1)求这组数据的极差; (2)若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填),请在频数分布表的空格中填写相关的量(温馨提示:请在答题卷的对应位置填写,填写在试题卷上无效) (3)经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求: ①这20名婴儿中是A型血的人数; ②表示O型血的扇形的圆心角度数.
如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B. (1)求k和b的值; (2)求△OAB的面积.
已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图). (1)求证:AC=BD; (2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.
解方程组.
计算:.