(年江苏徐州10分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.
已知关于的方程有实根。(1)求的值;(2)若关于的方程的所有根均为整数,求整数的值。
如图①,△ABC,,∠ABC=,将△ABC绕点A顺时针旋转得△AB ¢C ¢,设旋转的角度是。(1)如图②,当= °(用含的代数式表示)时,点B ¢恰好落在CA的延长线上;(2)如图③,连结BB ¢、CC ¢,CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形 , 。 (不含全等三角形)。
已知:如图,在△ABC中,AB=AC= 5,BC= 8,D,E分别为BC,AB边上一点,∠ADE=∠C.(1)求证:△BDE∽△CAD;(2)若CD=2,求BE的长。
对于抛物线。(1)它与x轴交点的坐标为,与y轴交点的坐标为, 顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是。
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件。(1)求商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获得最大利润,则每件商品应降价多少元?