(年湖南岳阳10分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.
如图,矩形是矩形(边在轴正半轴上,边在轴正半 轴上)绕点逆时针旋转得到的,点在轴的正半轴上,点的坐标为. (1)如果二次函数()的图象经过,两点且图象顶点的纵坐标为,求这个二次函数的解析式; (2)在(1)中求出的二次函数图象对称轴的右支上是否存在点,使得为直角三角形?若存在,请求出点的坐标和的面积;若不存在,请说明理由; (3)求边所在直线的解析式.
如图①,②,在平面直角坐标系中,点的坐标为(4,0),以点为圆心, 4为半径的圆与轴交于,两点,为弦,,是轴上的一动点,连结. (1)求的度数; (2)如图①,当与⊙A相切时,求的长; (3)如图②,当点在直径上时,的延长线与⊙A相交于点,问为何值时,是等腰三角形?
某商场购进枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果运回,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨. (1)如何安排甲、乙两种货车可一次性地运到?有几种方案? (2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果商场应选择哪种方案,使运输费最少?最少运费是多少?
2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希 望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题: (1)从图②中,我们可以看出人均捐赠图书最多的是_______年级; (2)估计九年级共捐赠图书多少册? (3)全校大约共捐赠图书多少册?
四边形ABCD、DEFG都是正方形,连接AE、CG. (1)求证:AE=CG; (2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.