(年湖南常德10分)如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;(3)请根据图2证明:△FGC∽△PFB.
当时,求的值.
如图,已知线段与相交于点,联结,为的中点,为的中点,联结.若∠A=∠D,∠OEF=∠OFE,求证:AB=DC.
解分式方程:.
解不等式:≤,并把它的解集在数轴上表示出来.
(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分) 如图,已知在△ABC中,AB=4,BC=2,以点B为圆心,线段BC长为半径的弧交边AC于点D,且∠DBC=∠BAC,P是边BC延长线上一点,过点P作PQ⊥BP,交线段BD的延长线于点Q.设CP=x,DQ=y. (1)求CD的长; (2)求y关于x的函数解析式,并写出它的定义域; (3)当∠DAQ=2∠BAC时,求CP的值.