首页 / 初中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 填空题
  • 难度 中等
  • 浏览 438

(2014年甘肃兰州4分)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是       

登录免费查看答案和解析

(2014年甘肃兰州4分)为了求122223…2100的值,