(本小题满分12分)已知抛物线,圆.(1)在抛物线上取点,的圆周上取一点,求的最小值;(2)设为抛物线上的动点,过作圆的两条切线,交抛物线于、点,求中点的横坐标的取值范围.
已知,求证:,,不能同时大于.
若下列方程:,,,至少有一个方程有实根,试求实数的取值范围. 解:设三个方程均无实根,则有 解得,即. 所以当或时,三个方程至少有一个方程有实根.
已知为互不相等的实数,求证:.
(本小题满分12分) 已知椭圆的离心率,A,B 分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且. (1)求椭圆的方程; (2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.
(本小题满分12分)双曲线的离心率为2,坐标原点到 直线AB的距离为,其中A,B. (1)求双曲线的方程; (2)若是双曲线虚轴在轴正半轴上的端点,过作直线与双曲线交于两点,求时,直线的方程.