(本小题满分12分)如图是图的三视图,三棱锥中,,分别是棱,的中点.(1)求证:平面;(2)求三棱锥的体积.
某校兴趣小组进行了一项“娱乐与年龄关系”的调查,对 15~65岁的人群随机抽取1000人的样本,进行了一次“是否是电影明星追星族”调查,得到如下各年龄段样本人数频率分布直方图和“追星族”统计表: (1)求的值. (2)设从45岁到65岁的人群中,随机抽取2人,用样本数据估计总体,表示其中“追星族”的人数,求分布列、期望和方差.
已知函数. (1)求的最小正周期; (2)已知,求的值.
已知三棱锥P—ABC中,PA=PB,CB⊥平面PAB,PM=MC,AN=3NB。 (1)求证明:MN⊥AB; (2)当∠APB=90°,BC=2,AB=4时,求MN的长。
如图,在四棱锥中,平面,底面是菱形,. (1)求证:平面 (2)若求与所成角的余弦值;
如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD. 求证:(1)CD⊥PD;(2)EF⊥平面PCD.