(本小题满分14分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.(1)求a,b的值.(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.(ⅰ)若k=1,求△OAB面积的最大值;(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
(理)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.(1)求点M的轨迹方程;(2)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.
某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年内将款全部付清的前提下,可以选择以下两种分期付款方案购车:方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.方案2:现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.(I)求证:A1D⊥平面BDE;(II)求二面角B―DE―C的大小;(III)求点B到平面A1DE的距离
质点A位于数轴x=0处,质点B位于x=2处.这两个质点每隔1秒钟都向左或向右平移一个单位,设向左移动的概率为,向右移动的概率为.(I)求3秒后,质点A在点x=1处的概率;(II)求2秒后,质点A、B同时在x=2处的概率.
已知函数y=sinωx•cosωx(ω>0) (ω>0)的周期为 , (I) 求ω 的值;(II) 当0≤x≤ 时,求函数的最大值和最小值及相应的x的值.