(本小题满分12分)某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到频率分布直方图(如图),观察图形中的信息,回答下列问题.(1)从频率分布直方图中,估计本次考试成绩的中位数;(2)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
(本题满分14分)已知函数f(x)满足2ax·f(x)=2f(x)-1,f(1)=1,设无穷数列{an}满足an+1=f(an).(1)求函数f(x)的表达式;(2)若a1=3,从第几项起,数列{an}中的项满足an<an+1;(3)若<a1<(m为常数且m∈N+,m≠1),求最小自然数N,使得当n≥N时,总有0<an<1成立。
(本题满分13分)已知y= F(x)的导函数为f(x)=ax3+bx2+cx+d(a≠0),函数y=f(x)的图象如右图所示,且函数y=F(x)的图象经过(1,2)和(-1,2)两点,又过点(1,0)作斜率之积为-10的两条直线l1和l2,l1和l2与函数的图象分别相交于A、B两点和C、D两点,O为坐标原点。(1)求函数y=f(x)的对称中心的坐标;(2)若线段AB和CD的中点分别为M,N,求三角OMN面积的取值范围。
(本题满分12分)已知椭圆为常数,且,过点且以向量为方向向量的直线与椭圆交于点,直线交椭圆于点 (为坐标原点).(1)的面积的表达式;(2)若,求的最大值.
(本题满分12分)如图,四棱锥P—ABCD中,PA⊥ABCD,四边形ABCD 是矩形. E、F分别是AB、PD的中点.若PA=AD=3,CD=. (1)求证:AF//平面PCE; (2)求点A到平面PCE的距离;(3)求直线FC与平面PCE所成角的大小。
有混在一起质地均匀且粗细相同的长分别为1、2、3的钢管各3根(每根钢管附有不同的编号),现随意抽取4根(假设各钢管被抽取的可能性是均等的),再将抽取的4根首尾相接焊成笔直的一根.(1)若用ξ表示新焊成的钢管的长度(焊接误差不计),试求随机变量的分布列及;(2)设的取值从小到大依次为数列是首项为1,公差为的等差数列,设,当时,求的值。