(本小题满分12分)某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到频率分布直方图(如图),观察图形中的信息,回答下列问题.(1)从频率分布直方图中,估计本次考试成绩的中位数;(2)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
已知函数(1)若在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=-是的极值点,求在[1,a]上的最大值;(3)在(2)的条件下,是否存在实数b,使得函数=bx的图象与函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
(本小题满分12分)已知定义域为R的函数为奇函数,且满足,当x∈[0,1]时,.(1)求在[-1,0)上的解析式;(2)求.
(本小题满分12分)数列{an}的前n项和记为Sn,(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
(本小题满分12分)已知向量,,且.(1)求及;(2)求函数的最大值,并求使函数取得最大值时的
(本小题满分12分) 解下列不等式:(1) (2)、