(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.(1)求随机变量的分布列及其数学期望E;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.
定义在上的函数是减函数,且是奇函数,若,求实数的范围.
设函数为定义域相同的奇函数,试问是奇函数还是偶函数,为什么?
圆上一点A依逆时针方向作匀速圆周运动,已知点A每分钟转过θ角(0<θ≤π),经过2分钟到达第三象限,经过14分钟回到原来的位置,那么θ是多少弧度?
解答下列各题: (1)已知扇形的周长为10cm,面积为4cm2,求扇形圆心角的弧度数. (2)已知一扇形的圆心角是72°,半径等于20cm,求扇形的面积. (3)已知一扇形的周长为40cm,求它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?
已知α是第二象限的角, (1)指出所在的象限,并用图形表示其变化范围. (2)若α同时满足条件|α+2|≤4,求α的取值区间.