已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(Ⅰ)求证:EF平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;
(本小题满分14分) 如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记ÐAOP=q,q∈(0,π). (1)当q=时,求点P距地面的高度PQ; (2)试确定q的值,使得ÐMPN取得最大值.
(本小题满分14分) 在四棱锥P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB, E为PA的中点. (1)求证:BE∥平面PCD; (2)求证:平面PAB⊥平面PCD.
(本小题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知acosC+ccosA=2bcosA.(1)求角A的值;(2)求sinB+sinC的取值范围.
(本小题满分10分)已知.⑴求及;⑵试比较与的大小,并说明理由.
(本小题满分10分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为。现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止。若摸出白球,则记2分,若摸出黑球,则记1分。每个球在每一次被取出的机会是等可能的。用x表示甲,乙最终得分差的绝对值.(1)求袋中原有白球的个数;(2)求随机变量x的概率分布列及期望Ex.