(本小题满分12分)已知向量,=,函数,(1)求函数f(x)的解析式及其单调递增区间;(2)当x∈时,求函数f(x)的值域.
(本小题满分10)已知. (1)求的值; (2)求的值.
(本小题共14分)已知定义在上的函数 (1)求证:存在唯一的零点,且零点属于(3,4); (2)若,且对任意的1恒成立,求的最大值.
(本小题共13分)已知椭圆的左焦点为,过点M(-3,0)作一条斜率大于0的直线与W交于不同的两点A、B,延长BF交W于点C. (1)求椭圆W的离心率; (2)求证:点A与点C关于轴对称.
(本小题共13分)设,已知函数. (1)当时,求函数的单调区间; (2)若对任意的,有恒成立,求实数的取值范围.
(本小题共14分)如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到点,且在平面BCD上的射影O恰好在CD上. (1)求证:BC⊥; (2)求证:平面⊥平面; (3)若AB=10,BC=6,求三棱锥的体积.