(本小题满分10分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球的人数是多少?
解方程: (1) (2) (3) (4)
已知A(,0),直线与x轴交于点F,与y轴交于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A′,连接AA′、A′D.直线l从AB出发,以每秒1个单位的速度沿y轴正方向向上平移,设移动时间为t. (1)求点A′的坐标(用含t的代数式表示); (2)求证:AB=AF; (3)过点C作直线AB的垂线交直线于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA上一动点,连结PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连结DF交AB于点G. (1)当P是OA的中点时,求PE的长; (2)若∠PDF=∠E,求△PDF的面积.
把球放在长方体纸盒内,球的一部分露出盒外,如下所示为正视图.已知EF=CD=16厘米,求出这个球的半径.
已知ABCD的两边AB、AD的长是关于x的方程的两个实数根. (1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长; (2)若AB的边长为2,那么ABCD的周长是多少?